三角函数的诱导公式(三角函数诱导公式表格汇总)
100次浏览 发布时间:2024-09-07 08:51:34
三角函数的诱导公式一共有54个,其中绝大多数公式又有角度制和弧度制两种表达形式,将这些公式分为六组,每组中的公式具有类似的规律。通过分类归纳,有利于更系统地掌握这些诱导公式。不管是哪一组公式,都要先设一个任意角度α,围绕着这个α来表示这些公式。以下以弧度制为例,介绍各组公式的详情。
第一组公式完全就是周期性的运用,因为常用的三角函数有相同的周期2kπ(k为任意整数),但2kπ未必是唯一的周期。不过根据周期函数的定义,都有:
sin(2kπ+α)=sinα;cos(2kπ+α)=cosα;tan(2kπ+α)=tanα;cot(2kπ+α)=cotα;sec(2kπ+α)=secα;csc(2kπ+α)=cscα。(k∈Z)
在几何意义上,第一组公式表示终边相同的角,三角函数值都相等。
第二组公式是π+α的三角函数值与α的三角函数值之间的关系。
一方面正切和余切都以π为最小正周期,所以tan(π+α)=tanα;cot(π+α)=cotα。
另一方面由正弦函数和余弦函数的定义公式,以及它们在坐标平面上的意义,可以推知sin(π+α)=-sinα;cos(π+α)=-cosα,又由正割与余弦的互为倒数关系,以及余割与正弦的互为倒数关系,就可以知道sec(π+α)=-secα;csc(π+α)=-cscα。
在几何意义上,第二组公式表示终边形成平角的两个角的三角函数关系。
第三组公式是互为相反的两个角的三角函数值的关系。由正弦、正切、余切和余割的奇函数性质,以及余弦、正割的偶函数性质,有:
sin(-α)=-sinα;cos(-α)=cosα;tan(-α)=-tanα;cot(-α)=-cotα;sec(-α)=secα;csc(-α)=-cscα.
在几何意义上,第三组公式表示终边关于始边对称的两个角的三角函数关系。
第四组公式是π-α和α的三角函数值之间的关系,由第三组公式结合第二组公式推得,即:
sin(π-α)=sinα;cos(π-α)=-cosα;tan(π-α)=-tanα;cot(π-α)=-cotα;sec(π-α)=-secα;csc(π-α)=cscα.
在几何意义上,第四组公式表示互补的两个角的三角函数关系。
第五组公式是2π-α和α的三角函数值之间的关系,由第一组公式和第三组公式推得,即
sin(2π-α)=sin(-α)=-sinα;cos(2π-α)=cos(-α)=cosα;tan(2π-α)=tan(-α)=-tanα;cot(2π-α)=cot(-α)=-cotα;sec(2π-α)=sec(-α)=secα;csc(2π-α)=csc(-α)=-cscα.
在几何意义上,第五组公式表示两个角的和是周角时,两者的三角函数关系。
最后一组公式是π/2±α 以及3π/2±α与α的三角函数值之间的关系,很明显,这里面又可以分成四种情况:
(1)π/2-α 与α的三角函数值之间的关系:由三角函数最原始的定义,在直角三角形中,两个锐角的三角函数有如下关系:
sin(π/2-α)=cosα;cos(π/2-α)=sinα;tan(π/2-α)=cotα;cot(π/2-α)=tanα;sec(π/2-α)=cscα;csc(π/2-α)=secα.
如果认为钝角的余角是负角度的话,那么它们表示互余的两个角的三角函数关系。(不过一般认为钝角没有余角)
(2)π/2+α 与α的三角函数值之间的关系,由公式(1)结合第四组公式推得,即:
sin(π/2+α)=cosα;cos(π/2+α)=-sinα;tan(π/2+α)=-cotα;cot(π/2+α)=-tanα; sec(π/2+α)=-cscα;csc(π/2+α)=secα.
在几何意义上,表示终边互相垂直的两个角的三角函数关系:(终边互相垂直有两种情形)
(3)3π/2-α与α的三角函数值之间的关系,由公式(1)结合第二组公式推得,即:
sin(3π/2-α)=-cosα;cos(3π/2-α)=-sinα;tan(3π/2-α)=cotα;cot(3π/2-α)=tanα;sec(3π/2-α)=-cscα;csc(3π/2-α)=-secα.
在几何意义上,表示终边关于y=-x对称的两个角的三角函数关系:
(4)3π/2+α与α的三角函数值之间的关系,由公式(2)结合第二组公式推得,即:
sin(3π/2+α)=-cosα;cos(3π/2+α)=sinα;tan(3π/2+α)=-cotα;cot(3π/2+α)=-tanα;sec(3π/2+α)=cscα;csc(3π/2+α)=-secα.
在几何意义上,表示终边互相垂直的两个角的三角函数关系的另一种情形:
最后把这些诱导公式全部归纳成表格如下:
这个表格包括行标题:组别,弦度,以及对应的六种常用三角函数。列标题是组别序号,副标题是各弧度。按照第一行第一列是sinα算起,如果要知道cos(2π-α)对应的诱导公式,就找到第五行第二列对应α的三角函数,这个函数是cosα,因此cos(2π-α)=cosα。把表设计成这种形式,会更简洁,且便于查阅。